
Complement of Dynamic Slicing for Android Applications with
Def-Use Analysis for Application Resources

Hsu Myat Win
University of Technology Sydney

Australia

HsuMyat.Win@student.uts.edu.au

ABSTRACT

Existing static and dynamic slicing techniques for Android ap-

plications exhibit limitations when the location of the fault is in

application resources such as layout definitions and user interface

strings. This paper proposes a novel approach called SfR (Slicing

for Resources), which identifies the dependences between the pro-

gram statements and the application resources to complete the

slice for Android applications. We performed the static analysis to

generate the resource dependence graph (RDG), which includes

data dependences on application resources. We integrated RDG

in AndroidSlicer and evaluated on 3 Android applications. The re-

sult shows that SfR is more efficient in accuracy than the existing

state-of-the-art dynamic slicing technique named AndroidSlicer.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools.

KEYWORDS

Android, slicing

ACM Reference Format:

Hsu Myat Win. 2022. Complement of Dynamic Slicing for Android Ap-

plications with Def-Use Analysis for Application Resources. In IEEE/ACM

9th International Conference on Mobile Software Engineering and Systems

(MOBILESoft ’22), May 17–24, 2022, Pittsburgh, PA, USA. ACM, New York,

NY, USA, 2 pages. https://doi.org/10.1145/3524613.3527808

1 PROBLEM AND MOTIVATION

Program slicing [8] is to extract the program statements that affect

the values computed at some point of interest (i.e., a particular state-

ment or variable, often referred as a slicing criterion). While static

slicing considers all possible program paths leading to the slicing

criterion, dynamic slicing focuses on one concrete execution for

the given input [2]. Due to Android’s event-driven nature, dynamic

slicing for Android is more challenging than that for traditional

Java programs. Furthermore, mobile apps rely on application re-

sources, and thus a slicing solution has to consider data flowing

through application resources.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9301-0/22/05. . . $15.00
https://doi.org/10.1145/3524613.3527808

2 BACKGROUND AND RELATEDWORK

Static slicing techniques typically operate on a program dependence

graph (PDG); the nodes of the PDG represent statements or a basic

block, and the edges correspond to data or control dependences

between nodes [6]. The dynamic PDG, which is a subgraph of the

static PDG [5], consists of only those nodes and edges that are

exercised during a particular run. Precisely, a dynamic slicing tool

is first to collect an execution trace of a program by instrumenting

the program. Then, the tool checks the control and data depen-

dences of the trace statements, identifying statements that affect

the slicing criterion and omitting the rest. The dynamic slices are

more compact than static ones, making them suitable for debug-

ging activities [2] [1]. While AndroidSlicer [3] performs dynamic

slicing by modeling asynchronous data and control dependences of

Android apps, [4] presents the dynamic slicing using alias analysis.

However, the prior techniques limit locating the fault in applica-

tion resources such as layout definitions and user interface strings.

Likewise AndroidSlicer, SfR uses dynamic slicing to produce the

program slices that aid debugging for Android apps. However, SfR

differs from AndroidSlicer in that it can locate the fault if the bug

is in application resources by offering the data dependences on the

application resources.

3 APPROACH AND NOVELTY

SfR consists of three major stages: (1) def-use analysis for applica-

tion resources, (2) dynamic backward slicing, (3) slice complement.

Def-Use Analysis for Application Resources. Basically, we use

def-use analysis for data dependences in PDG. If the statement 𝑆2
used the same object 𝑎 which is defined as int with value 1 in 𝑆1,
𝑆2 is data-dependent on 𝑆1.

𝑆1 in t a =1 ; Def

𝑆2 in t b=a +2 ; Use

𝑅𝑑
<TextView a n d r o i d : i d = "@+ id / t v "

a n d r o i d : t e x t = " @str ing / m_t " / >
Def

𝑆𝑢
TextView t = (TextView)

f indViewById (R . i d . t v) ;
Use

In our approach, for data dependences on resources, we use pre-

defined keywords (i.e., findViewById for “use” and android:id
for “def”), and we use a unique resource name for the element as

a reference. If the statement 𝑆𝑢 contains the predefined keyword

indicating a “use” of the application resource (i.e., findViewById)
with a unique resource name for the element (i.e., 𝑡𝑣) which is de-
fined as TextView with a string value of 𝑚_𝑡 in resource 𝑅𝑑 , 𝑆𝑢
is data-dependent on 𝑅𝑑 . In this way, engineers can enhance the
default set of keywords characterizing uses and definitions of appli-

cation resources. Note that SfR cannot handle different resources

with the same resource name (e.g., same resource name for widgets

in different Activities). However, we aim to show the slicing quality

improvement, and SfR is enough to prove it.

100

9th IEEE/ACM International Conference on Mobile Software Engineering and Systems

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3524613.3527808&domain=pdf&date_stamp=2022-10-17

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Hsu Myat Win

In static RDG, a node can be either a tag element or a statement,

and an edge corresponds to data dependence on application re-

sources. By using the “def” keyword, SfR constructs the mapping

(we call 𝑟𝑀𝑎𝑝) with a reference (i.e., a unique resource name for
the element) and the corresponding tag element, including value

and attributes before generating RDG. SfR builds a static RDG by

scanning “use” keywords. If SfR found the “use” keyword in a state-

ment, the statement is marked as “use” with a reference to link to

the corresponding tag with the help of rMap.

Dynamic Backward Slicing. A backward dynamic slice is the set

of instructions whose execution affects the slicing criterion (i.e.,

the instructions on which the slicing criterion is data or control

dependent, either directly or transitively) [7]. Inspired by Android-

Slicer, SfR generates the backward dynamic slice from the point of

interest by using dynamic PDG that includes asynchronous data

and control dependences.
1 −< s t r i n g name="m_t " >Themen </ s t r i n g >

+< s t r i n g name="m_t " > Thread </ s t r i n g > strings.xml

2 <TextView andro id : i d ="@+ i d / t v "

and ro id : t e x t =" @str ing / m_t " / > dx.xml

3 TextView t = (TextView)

f indViewById (R . i d . t v) ;

4 S t r i n g wt = t . g e tTex t () . t o S t r i n g () ; Dj.java

(Input propagation) Line 1 −→ Line 2 −→ Line 3 −→ Line 4

(a) App code.

Instruction number: Instruction
36612: onCreate:...Dj: $r8 = virtualinvoke $r11.<...TextView: ... getText()>()
36611: onCreate:...Dj: $r11 = (...TextView) $r2
36610: findViewById:...: $r1 = virtualinvoke $r2.<...>($i0)

(Value propagation) $r8 −→ $r11 −→ $r2 −→ $i0

(b) Slice generated by AndroidSlicer.

andro id : i d ="@+ i d / t v " and ro id : t e x t =" @str ing / m_t " / >

(c) Complement generated by SfR.

Figure 1: An example bug found in NewPipe app.
Slice Complement. In this stage, SfR completes the slice by using

static RDG. Specifically, for each instruction in slice generated by

the first stage (i.e., dynamic backward slicing), SfR checks against

the static RDG recursively and extracts the corresponding tag ele-

ment. Since the slice generated by AndroidSlicer includes Jimple

instructions, SfR provides the separate output for extracted tag

elements. Particularly, we aim to help developers by providing all

statements and application resources affecting the point of interest.

Figure 1 shows an example bug 1, which is the wrong text (i.e.,

Themen) for label on user interface (UI), found in the NewPipe
app. Specifically, the expected value for 𝑤𝑡 is Thread, however,
TextView object returns the wrong text (i.e., Themen). In Figure 1b,
AndroidSlicer generated the slice from the point of interest (i.e., 𝑟8
holding wrong value Themen), and it included Line 4 (i.e., Instruc-
tion number 36612) and Line 3 (i.e., Instruction number 36611 and

36610) and missed the location of the fault in application resources

(i.e., Line 1 and 2). In Figure 1c, SfR generated the complement with

the help of RDG. Specifically, the variable (𝑡𝑣) used at Line 3 is
defined at Line 2.

4 RESULTS AND CONTRIBUTIONS

Experiment.We implemented SfR on AndroidSlicer to evaluate

the effectiveness of our approach because (1) it is publicly available,

and (2) it is one of the state-of-the-art slicing techniques for Android

1https://github.com/TeamNewPipe/NewPipe/issues/5546

apps. Although AndroidSlicer does not target application resources,

we chose AndroidSlicer to compare because (1) we aim to show that

SfR can improve the slicing quality for Android apps, and (2) no

slicing tool is available to compare if the bug is located in Android

application resource. Our evaluation studies the research question

RQ: Does SfR help to improve the quality of the slices generated

by AndroidSlicer?

Results and Discussions. Table 1 shows the experiment results.

We chose the apps whose traces were small and verifiable within

a reasonable effort and manually computed the slices w.r.t. the

slicing criterion.We then compare themanual slices with the output

produced by SfR and AndroidSlicer and calculate the recall (R),

precision (P), and F-Measure (F) achieved by each tool to answerRQ.

We denoted “instructions in computed slice” as 𝐼𝑐 and “instructions

in manual slice” as 𝐼𝑚 . Our experiments show that using def-use

analysis for application resources is effective and achieves 96%

accuracy on average if the fault location is in application resources.

Note that the complement includes the corresponding elements and

slices generated by AndroidSlicer consists of the Jimple instructions.

Hence, we counted an attribute of an element as one instruction to

calculate F-measure.

𝑅 =
| {𝐼𝑐 } ∩ {𝐼𝑚 } |

| {𝐼𝑐 } |
𝑃 =

| {𝐼𝑐 } ∩ {𝐼𝑚 } |

| {𝐼𝑚 } |
𝐹 -𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2

𝑅 ∗𝑃

𝑅 + 𝑃

Table 1: Accuracy. Instructions are denoted as IS.

App
Manual AndroidSlicer SfR

#IS #IS R% P% F% #IS R% P% F%

NewPipe 11 8 99 73 84 10 99 91 95

FAST 31 28 99 90 94 30 99 97 98

Simplenote 19 16 99 84 91 18 99 95 97

Conclusion. This study proposes resource dependences to com-

plete the slicing. We observed improvements in the quality of slices

and have evaluated for 3 apps. On average, the accuracy is 90% for

AndroidSlicer and 96% for SfR. This indicates that the data flow

between statements and application resources impacts the accuracy

of slicing tools for Android applications. We intend to build the

tool supporting the parent-child tag element in the future.

5 ACKNOWLEDGEMENT

I wish to thank Prof. Yulei Sui and Prof. Shin Hwei Tan for their

guidance. This work was supported by the National Natural Science

Foundation of China (Grant No. 61902170).

REFERENCES
[1] Hiralal Agrawal, Richard A DeMillo, and Eugene H Spafford. 1991. Dynamic

slicing in the presence of unconstrained pointers. In Proceedings of the symposium
on Testing, Analysis, and Verification. 60–73.

[2] Hiralal Agrawal and Joseph R Horgan. 1990. Dynamic program slicing. ACM
SIGPlan Notices 25, 6 (1990), 246–256.

[3] Tanzirul Azim, Arash Alavi, Iulian Neamtiu, and Rajiv Gupta. 2019. Dynamic
slicing for android. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 1154–1164.

[4] Mayee Chen, Karan Goel, Nimit S Sohoni, Fait Poms, Kayvon Fatahalian, and
Christopher Ré. 2021. Mandoline: Model Evaluation under Distribution Shift. In
International Conference on Machine Learning. PMLR, 1617–1629.

[5] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The program de-
pendence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems (TOPLAS) 9, 3 (1987), 319–349.

[6] Susan Horwitz, Thomas Reps, and David Binkley. 1988. Interprocedural slicing
using dependence graphs. In Proceedings of the ACM SIGPLAN 1988 conference on
Programming Language design and Implementation. 35–46.

[7] Bogdan Korel and Janusz Laski. 1988. Dynamic program slicing. Information
processing letters 29, 3 (1988), 155–163.

[8] Mark Weiser. 1984. Program slicing. IEEE Transactions on software engineering 4
(1984), 352–357.

101

