
SCODA - Framework for Software Capability
Representation and Inspection

Hsu Myat Win1[0009−0001−0422−4496], Sebastian Rodriguez1[0000−0002−0514−9221],
John Thangarajah1[0000−0002−7699−6444], and Andrew Warhurst2

1 Royal Melbourne Institute of Technology, Melbourne, Australia
{hsu.myat.win, sebastian.rodriguez, john.thangarajah}@rmit.edu.au

2 Defence Science and Technology Group, Australia
andrew.warhurst1@defence.gov.au

Abstract. Software composition remains a significant challenge in to-
day’s technology landscape, especially when dynamically integrating and
collaborating among different systems. Before software composition, ana-
lyzing software capabilities (SC) in a system is a crucial and challenging
step. In this work, we introduce an ontology-based framework for SC
representation and inspection. Our novelty lies in our model called the
Software Capabilities for Open and Dynamic Architectures(SCODA),
which represents software capability in the system by providing essential
data for effective software inspection. Unlike previous approaches that
primarily focused on software quality or reusability, SCODA emphasizes
a structured representation of capabilities by capturing dynamic factors
such as preconditions and effects. We used the Multi-Agent Programming
Contest (MAC) to develop the model and the Drone Courier System
(DCS) to illustrate our approach, demonstrating its utility in real-world
scenarios. We have implemented a tool called QueryCap designed for in-
specting software capabilities from the dataset (i.e., a list of SCs found
in the system) for a given task.

Keywords: Software capability · Ontology.

1 Introduction

Software composition presents one of the most challenging issues in today’s
rapidly evolving technological landscape, particularly when integrating multiple
dynamic software systems. Before engaging in software composition, it is crucial
to inspect the functionalities of existing software. This step is also challenging
because misrepresenting software functional capabilities may lead to deviations
from the task’s goal or provide inaccurate information. For example, one of the
faults in integrating a Web API like Adyen’s payment system is incomplete
or insufficient information on how to implement specific API features or func-
tionalities, which can hinder proper integration [21]. Under ISO 9000:2015(en),
capability refers to “the ability of an object to realize an output that will fulfil the
requirements for that output”. In the area of system engineering, capability refers



2 H.M. Win et al.

to “the ability of a system to execute a particular course of action or achieve a
desired effect, under a specified set of conditions ” [22]. In software engineering,
the capability maturity model (CMM) has introduced processes as capabilities,
defining how to assess specific qualities of software engineering processes, and
offering an understanding of the current state of software systems [13]. We fol-
low the definition from system engineering perspective because in our project,
we specifically focus on functional capability in the software rather than the
software engineering process or business requirement.

Prior research has primarily focused on assessing and evaluating software ca-
pabilities within specific requirements, catering solely to organizational needs [8].
Similarly, some work typically focuses on software quality to determine if it meets
business requirements [9]. However, this approach often neglects the exploration
of inherent abilities within the existing software. On the other hand, some re-
searchers have introduced feature extractions from systems to compose software
artifacts written in different languages [10, 11]. Additionally, software product
lines have aimed to identify reusable functionalities from previous software ver-
sions [1, 12]. Since they focus on software composition, there is still a need to
address the investigation of software abilities across different systems or software
before composition. Similarly, some researchers explore assessing the reusability
of software components through software capability profiling [2–4]. However,
there remains a gap in addressing effects that can impact the features of the
entity and influence the expected output. For instance, available charge in a
drone’s battery could affect its ability to complete its task, yet existing studies
often overlook such critical factors.

In this project, we introduce an ontology-based framework for representing
software capability, which we have termed the SCODA model. The SCODA
model includes six main concepts: entity, action, effect, condition, feature, and
resource. We chose the standard ontology because it provides us with a consis-
tent framework for representing and organizing knowledge, promoting reusabil-
ity across different applications and projects. It also enables seamless integration
with other existing ontologies, facilitating data interoperability and reducing the
effort required to combine different data sources. We used the Multi-Agent Pro-
gramming Contest (MAC)3 as our initial study for developing the model. MAC
is an annual event that allows participants to showcase their innovations in the
field of multi-agent systems and artificial intelligence (AI). This competition
involves developing multi-agent systems to solve cooperative tasks in a dynam-
ically changing environment. Agents are autonomous entities that collaborate
to solve tasks. An agent possesses the ability to learn and make autonomous
decisions, leveraging interactions with neighboring agents or the environment to
acquire new knowledge and execute actions to accomplish their designated tasks
within the system [20]. We chose MAC for analyzing software capability because
(1)in MAC, agents (e.g., a drone or a truck) work dynamically to achieve spe-
cific goals, aligning with SCODA’s emphasis on open and dynamic architecture,
and (2) our research group has participated in this competition in the past,

3 https://multiagentcontest.org/2018/



SCODA - Framework for Software Capability Representation and Inspection 3

giving us expertise within that domain. For illustration, we developed a Drone
Courier System (DCS) as a second case study due to its simplicity for the paper.
Specifically, we created instances of the SCODA model for the DCS. We then
developed a mechanism to inspect and assess the software capabilities within the
dataset for a given task (e.g., do we have a software capability that can deliver
a package from a warehouse to a customer?). We choose SPARQL Protocol and
RDF Query Language (SPARQL) for developing software capability inspection
mechanism because it allows for powerful querying and manipulation of data
within Resource Description Framework (RDF) graphs, enabling complex data
retrieval and integration in ontology-based systems. Overall, our aim is to pro-
vide insights into the software capabilities of existing software for inspection and
our contributions are as follows:

– developing a model for software capability representation;
– providing a query language to inspect the software capability; and
– presenting a case study that illustrates the use of our model.

2 Background

In this section, we provide background information on the relevant technolo-
gies for the project: ontology engineering, utilized for modeling, and SPARQL,
employed for SC inspection. Ontology engineering involves creating knowl-
edge maps (ontologies) to efficiently organize information. An ontology repre-
sents structured knowledge within a specific domain, encompassing concepts,
and relationships [16]. Ontologies serve as specifications for sharing and reusing
knowledge across applications [15]. Web Ontology Language (OWL) is a
standard endorsed by the W3C for constructing OWL knowledge models [14]. It
is a semantic web language designed to model intricate knowledge about enti-
ties, groups, and their relationships. OWL has found extensive use in modeling
concepts such as access control policies [18] and privacy in medical data [17].
Knowledge expressed in OWL can be utilized by computer programs to verify
consistency or make implicit knowledge explicit. Hence, our approach is designed
based on ontology engineering principles. The ontology is developed using in-
formation gathered from human sources (such as domain experts), structured
sources (like databases), or unstructured sources (such as books). This informa-
tion is then assigned to the ontology in the form of concepts, relationships, and
definitions. The proposed ontology, referred to as SCODA, was constructed using
Protégé 5.0. Protégé is a freely available ontology editor and information man-
agement framework developed by the Biomedical Informatics Research Center
at Stanford University. SPARQL is a standardized query language and proto-
col for querying RDF data. It allows users to retrieve and manipulate data in
RDF format, and supports the principles of the Semantic Web by enabling the
integration and querying of data with rich semantics. It also allows applications
to understand and reason about the relationships between entities, making it
valuable for knowledge representation and discovery.



4 H.M. Win et al.

Some studies emphasize examining software capabilities and resource aware-
ness on available hardware capacity such as CPU and memory [5], neglecting
other required resource types (e.g., battery power). Proposals for defining ca-
pability include preconditions, effects, input/output, hardware, and parameters
during domain planning [6, 7]. However, these often focus on post-conditions
rather than dynamic factors influencing process outcomes. In our approach, we
consider both effects and preconditions as integral parts of software capability,
as they significantly influence software functionality. For example, when a drone
moves from one location to another, its battery decreases (we call this an effect),
which could lead to the drone not reaching its destination. Therefore, having
enough battery should be a precondition for a drone to perform certain tasks
and provide specific output. Solely observing the output of software functions is
insufficient for defining software capability. Instead, analyzing the preconditions
and effects that influence the outcome is crucial. Therefore, our approach aims
to address the shortcomings of previous research by considering dynamic factors
that influence software capability outcomes, thus providing a more robust model
for representing software capabilities (SC).

3 Approach

As shown in Figure 1, our ontology-based approach begins with domain knowl-
edge elicitation followed by software capability (SC) representation modeling
(i.e., SCODA model). We also developed a querying mechanism for SC inspec-
tion. The objective of the domain knowledge elicitation step is to gather and
extract relevant information within the domain (e.g., Multi-Agent City contest
(MAC)). This process involves comprehending the context, and identifying their
functionalities and essential elements. We begin by reviewing documents and
conducting simulations to verify functionalities. For instance, in the context of
MAC, we validated that a drone can perform functions such as loading, moving,
and charging. Subsequently, we analyze the necessary elements and conditions
required to support these functionalities. E.g., for the moving function, the drone
needs a battery and knows the destination.

3.1 SCODA model

Inspired by Jabardi and Hadi [19], who utilized ontological engineering to detect
and classify fake accounts on Twitter, our ontology development comprises four
steps: (1) defining the domain and scope of the ontology (specifically focusing on
software capability), (2) establishing classes and their hierarchical structure, (3)
specifying class properties, and (4) assigning values or assertions to these prop-
erties (referred to as “slot facts”). Specifically, we explored candidate components
to represent Software Capability (SC), considering fundamental elements in sys-
tems or software. We defined a component as an asset representing a complete
aspect of software capability. We then examined which components could influ-
ence the expected output of a given task and their characteristics. We identified



SCODA - Framework for Software Capability Representation and Inspection 5

Fig. 1: The framework of the proposed method.

Fig. 2: SCODA model.

the essential components required to represent SC, seeking a balance between
generality and specificity. Additionally, we refined the definition and naming of
each SC component, clarifying terms like resource. We built our model using
Protégé, where classes represent components in SC. Subsequently, we investi-
gated connections among these components (i.e., relationships between classes)
and brainstormed class properties while assigning values to these properties.

Figure 2 illustrates the SCODA model, comprising six key concepts:

1. Entity: It is a complete and functional part of a system, capable of ex-
isting independently as either a software component, hardware component,
or a combination of both. For example, consider a drone that needs to go
to a warehouse. In this context, both the drone and the warehouse would
be entities; however, the drone can perform the action of going, while the
warehouse simply provides the context to complete the environment. There-



6 H.M. Win et al.

fore, we created two subclasses under entity, which we called Actor and
Non-actor. Specifically, an actor can perform actions or trigger software
functions, whereas a non-actor does not initiate actions but serves as a func-
tional part of the system that provides context or environment for actions.

2. Action: A process or operation executed by an actor that results in changes
to the system or the environment. An action typically involves manipulat-
ing resources, affecting conditions, and changing properties. For example, a
drone’s movement action could change its location.

3. Resource: A resource represents a physical or informational element/com-
ponent that an entity possesses, which can be used, accessed, or depended on
by actors to perform tasks. It does not function independently but supports
the functioning of the system, being utilized, consumed, or accessed during
system operations. For instance, a drone’s battery.

4. Condition: It refers to any requirement or circumstance that influences
an action. For example, before going to a warehouse, a drone must have
enough battery. In this context, we introduced Precondition as a subclass
of condition. Besides precondition, we may need some limitations, such as
“Drone must reach a warehouse within 1 minute”. Therefore, we introduced
Constraint as a subclass as well. Specifically, a precondition refers to the
condition that must be satisfied for an action to occur, while a constraint
denotes any limitation or restriction that governs the action.

5. Effect: A measurable or observable change or impact when an action is
triggered. It describes the impact of actions on entities and resources. For
example, upon going to a warehouse, a drone’s battery would experience a
negative impact. Conversely, upon charging, a drone’s battery would expe-
rience a positive impact. Therefore, we introduced the Modify concept as
a subclass of Effect. Specifically, the Modify effect can alter the feature
of an entity or resource by increasing, decreasing, changing, or blocking it.
In addition to altering features, an effect can delegate a task to an actor to
perform. For example, in MAC, an initiator agent responsible for evaluating
and allocating all types of jobs can delegate the selected job to an agent who
can perform the action such as “building a well”. Thus, we introduced the
Delegate concept as a subclass of Effect.

6. Feature: An attribute or property of an entity or a resource. For instance,
the location of an agent.

Relationships between concepts. After defining each concept in our model,
we now explore how these concepts relate to each other, revealing the connections
and interactions among them. We have provided relationships between concepts
in Figure 1. Dotted lines represent subclass relationships, while solid lines repre-
sent relationships between the concepts. Following are the relationships between
the concepts -

performsAction represents a relationship between an actor and an action.
Specifically, an actor can perform an action.



SCODA - Framework for Software Capability Representation and Inspection 7

causalEffect represents the relationship between an action and an effect on
resources or entities. It helps us understand how a specific action leads to
observable changes or effects on resources or entities.
impactsFeature represents the relationship to illustrate how an effect impacts
and changes the specific feature of a resource or entity. It helps us to under-
stand the direct consequences or changes impacted by a particular effect on the
relevant features.
hasResourceFeature represents the relationship between a resource and its
associated attributes, represented by features.
hasEntityFeature represents the relationship between an entity and its asso-
ciated attributes, represented by features.
ownsResource represents a relationship between an entity and a resource.
Specifically, an entity can own a resource.
contains represents a relationship between a resource and its own resource.
Specifically, a resource can contain resources.
hasCondition represents a relationship between an action and conditions.
Before triggering an action, conditions need to be satisfied.
isDefinedBy represents a relationship between a condition and features. Specif-
ically, the condition is defined by features.
delegatesTo represents a relationship between a delegate effect and an actor.

Insights. We derived the concept of an entity from MAC, where multiple agents
(i.e., drones, trucks, or cars) can perform actions, while warehouses and charging
stations support the context of MAC. We then applied this theory to generalize
real-world systems and arrived at the definition above. Some researchers have
suggested that a resource is a type of entity [20]. However, in our model, we
distinguish resources from entities because resources have distinct features, such
as supporting functions without being functional parts of a system (its features
determine the expected output), and they exist dependently on entities. Our
analysis revealed that rather than direct impacts (i.e., a direct relationship)
from operations (referred to as Actions) to resources, we need a conceptual
representation (an abstract representation) between them, which we term Ef-
fect. This possesses characteristics distinct from both actions and resources and
encompasses more than just a relationship between them. Consequently, we in-
troduced Effect as a concept in representing software capability and defined it as
such if it can alter the current state of a resource and it is triggered by an action.
Since resources can have varied states, we introduced the Feature concept (e.g.,
battery can have not only current_charge but also current_temperature) and an
effect could impact these features rather than the resource itself. Specifically, we
define the state as a feature if it can be changed, increased, decreased, or blocked
by an effect. Finally, our study revealed that certain actions need to trigger the
main action, leading us to introduce the concept of the Delegate effect.

3.2 SC inspection mechanism

The objective of the SC inspection mechanism is to facilitate the analysis and
understanding of software capabilities. We used SPARQL-based query because,



8 H.M. Win et al.

Algorithm 1: Inspecting SC
Input: Feature
Procedure InspectingSC (Feature)

effectsTypes ← QueryEffectsTypes(Feature);
DisplayListofEffectsTypes(effectsTypes);
selectedEffectType ← GetUserSelection(effectsTypes);
suggestedSC ← RetrieveSC(selectedEffectType);
DisplaySCDetails(suggestedSC);

Procedure QueryEffectsTypes(Feature)
/* Return effect types based on the provided feature. */

Procedure DisplayListofEffectsTypes(effectsTypes)
/* Display the effect types list (effectsTypes) to select. */

Procedure GetUserSelection(effectsTypes)
/* Return the selected effect type chosen by the user */

Procedure RetrieveSC(selectedEffectType)
/* Return the SC details based on the provided effectType */

Procedure DisplaySCDetails(suggestedSC)
/* Display suggested SC with corresponding actor, action,

effect, feature, and entity. */

Main:;
Feature ← Input(“Select the feature: ”);
InspectingSC(Feature);

ideally, we aimed for it to be as close to natural language as possible. This would
require Natural Language Processing (NLP); which we aim for future work.
As shown in Algorithm 1, we begin with an input parameter Feature, which
represents the specific feature of the entity or resource. Initially, the procedure
InspectingSC queries the ontology using QueryEffectsTypes(Feature) to retrieve
a list of effect types that impact the specified feature. These effect types are then
displayed to the user through DisplayListofEffectsTypes(effectsTypes), allowing
for user selection via GetUserSelection(effectsTypes). Once the user selects an
effect type, RetrieveSC(selectedEffectType) fetches details of the corresponding
Software Capability (SC). Finally, DisplaySCDetails(suggestedSC) presents the
suggested SC along with its associated actor, action, effect, feature, and entity
details to the user.

Implementation. We implemented in a tool named QueryCap, designed for
querying software capabilities from the dataset (i.e., a list of SCODA models of a
system). We use RDF for dataset creation because RDF is a standard data model
in semantic web technologies, enabling structured description and exchange of
data on the web. QueryCap is a standalone Java program and requires JDK
17.0.9, JavaFX SDK 21.0.1, and Apache Jena 4.9.0. It is a Windows application
and comprises three components: the User Interface (UI), Data Extraction, and



SCODA - Framework for Software Capability Representation and Inspection 9

Fig. 3: The process for illustrating our model.

Fig. 4: Software capability that can increase the Drone’s battery.

SPARQL scripts. When passing parameters across the class, data is stored in
the object model.

4 Case studies

To illustrate our approach, we present a much simpler case study (i.e., Drone
Courier System (DCS)) because Multi-Agent Programming Contest(MAC), which
we used for model development, requires a lot of domain knowledge to under-
stand. Therefore, for simplicity in illustration purposes, we developed DCS ex-
ample as a second case study to present our work here. DCS case study involves
delivering packages to customers, where the vehicle scheduler coordinates with
the warehouse to prepare the package, and a drone is deployed to transport and
deliver the package to the customer’s address.

The process of our illustration is shown in Figure 3. First, we created SCODA
models using our ontology-based model, DCS’s documentation and DCS’s sim-
ulation. Next, we stored the dataset (i.e., list of SCs) on the local machine,
and then the SC inspection mechanism implemented as QueryCap extracts the
relevant software capabilities based on the given task.
Creating SCODA models. Using SCODA model and DCS’s UML class di-
agram and sequence diagram, we created SCODA models for DCS. We take a
class as an actor if it can trigger actions/operations while we define it as a re-
source if it can be consumed/changed and we define it as a non-actor if neither
of that. We identified attributes of each class as features if they possess the
distance property (e.g., drone’s currentLoad). These attributes are further clas-
sified based on whether they can be changed, increased, decreased, or blocked,
thus determining their effects and types. We classified operations of a class as
actions if they impact any of the defined features. Because of page limitation,



10 H.M. Win et al.

(a) SPARQL (b) Result

Fig. 5: Finding features for Drone.

we illustrate SC which can charge Drone’s battery. As shown in Figure 4, when
Drone triggers Charge action, it causes a positive effect on the battery’s current
charge.

4.1 Inspecting software capability

We use SPARQL to extract SC from the dataset. We provided a sample query in
Figure 5. In the WHERE clause, ?entity hasEntityFeature ?feature . is a
triple pattern to retrieve all features (?feature) belonging to entities (?entity).
FILTER(str(?entity) = str(Drone)) is a filter clause to check if the ?entity
is Drone. Specifically, this query retrieves all features of Drone, using RDF
triples and a filter condition in SPARQL.

Based on algorithm 1, to illustrate our approach, we investigate SCs that can
alter a drone’s battery. The query begins by selecting types of effects that impact
a drone’s battery charge. Specifically, in the WHERE clause, the query defines
conditions ?effect ?impactsObj ?feature . and ?entity ?hasObj ?feature
. to select all effects that impact the feature of entity, filtered with conditions
str(?feature)=str(CurrentCharge) and str(?entity)=str(Drone) to ver-
ify if the feature is CurrentCharge of Drone. This query specifically retrieves all
effects (i.e., An effect that can increase the battery and An effect that can de-
crease battery) that impact the Drone’s battery. We assume the user chooses “An
effect which can increase battery”, our inspection continues to extract actions
which cause that effect and actors who perform those actions. Specifically, in the
WHERE clause, the query defines conditions ?action ?causes ?effect . and
?actor ?performs ?action . to extract all actions and corresponding actors.
In the filter clause, we have str(?effect)= str(Increase) to verify if the effect
is Increase. This query specifically retrieves all actions that can increase Drone’s
battery and actors that can perform those actions. The result of that query is
shown in Figure 6.

5 Discussion and conclusion

In this project, we developed a model for representing software capabilities which
we termed the SCODA model - an ontology-based framework to represent and in-
spect software capabilities. We used Multi-Agent Programming Contest (MAC)



SCODA - Framework for Software Capability Representation and Inspection 11

Fig. 6: SC which can able to increase Drone’s battery.

for developing the model and the Drone Courier System (DCS) to illustrate our
approach. We also developed an inspection mechanism for software capabilities
with the help of SCODA model. For illustration purposes, we implemented a tool
named QueryCap4 for querying capabilities from the dataset and our demon-
stration shows that our approach can able to extract the relevant software ca-
pabilities for a given task. These insights enable us to make informed decisions
when dynamically integrating and collaborating among different systems.

Although this approach provides a robust framework for conceptualizing soft-
ware capabilities, it lacks real-time simulation capabilities and instance-level
modeling. Without dynamic analysis and runtime implementation, potential run-
time issues such as concurrency problems remain unaddressed, providing scope
for future work. However, our current approach lays the foundation for soft-
ware capability inspection using SCODA models and, in the future, we aim to
integrate dynamic analysis into our models to address runtime issues such as
concurrency problems.

6 Acknowledgments

This research is supported by the Commonwealth of Australia as represented by
the Defence Science and Technology Group.

References

1. Debbiche, J., Lignell, O., Krüger, J., Berger, T.: Migrating Java-based apo-games
into a composition-based software product line. In: Proceedings of the 23rd Interna-
tional Systems and Software Product Line Conference-Volume A, pp. 98–102 (2019)

2. Belfadel, A., Laval, J., Cherifi, C.B., Moalla, N.: Toward service orchestration
through software capability profile. In: Enterprise Interoperability VIII: Smart
Services and Business Impact of Enterprise Interoperability, pp. 385–395 (2019).
Springer

3. Belfadel, A., Laval, J., Bonner Cherifi, C., Moalla, N.: Semantic software capability
profile based on enterprise architecture for software reuse. In: Reuse in Emerging
Software Engineering Practices: 19th International Conference on Software and Sys-
tems Reuse, ICSR 2020, Hammamet, Tunisia, December 2–4, 2020, Proceedings 19,
pp. 3–18 (2020). Springer

4 https://github.com/hmteams/scoda



12 H.M. Win et al.

4. Belfadel, A., Amdouni, E., Laval, J., Cherifi, C.B., Moalla, N.: Towards software
reuse through an enterprise architecture-based software capability profile. Enterprise
Information Systems 16(1), pp. 29–70 (2022). Taylor & Francis

5. Rolia, J., Cherkasova, L., Arlitt, M., Andrzejak, A.: A capacity management service
for resource pools. In: Proceedings of the 5th International Workshop on Software
and Performance, pp. 229–237 (2005)

6. Hendler, J., Wu, D., Sirin, E., Nau, D., Parsia, B.: Automatic web services com-
position using Shop2. In: Proceedings of The Second International Semantic Web
Conference (ISWC) (2003)

7. Buehler, J., Pagnucco, M.: A framework for task planning in heterogeneous multi
robot systems based on robot capabilities. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 28, no. 1 (2014)

8. Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability maturity model,
version 1.1. IEEE Software 10(4), 18–27 (1993). IEEE

9. Bollinger, T., McGowan, C.: A critical look at software capability evaluations: An
update. IEEE Software 26(5), 80–83 (2009). IEEE

10. Apel, S., Lengauer, C.: Superimposition: A language-independent approach to soft-
ware composition. In: International Conference on Software Composition, pp. 20–35
(2008). Springer

11. Apel, S., Kästner, C., Lengauer, C.: Language-independent and automated soft-
ware composition: The FeatureHouse experience. IEEE Transactions on Software
Engineering 39(1), 63–79 (2011). IEEE

12. Linsbauer, L., Fischer, S., Michelon, G.K., Assunção, W.K.G., Grünbacher, P.,
Lopez-Herrejon, R.E., Egyed, A.: Systematic software reuse with automated extrac-
tion and composition for clone-and-own. In: Handbook of Re-Engineering Software
Intensive Systems into Software Product Lines, pp. 379–404 (2022). Springer

13. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI for development: guidelines for
process integration and product improvement. Pearson Education (2011)

14. W3C. Retrieved July 9, 2024, from https://www.w3.org/OWL/
15. Neches, R., Fikes, R.E., Finin, T., Gruber, T., Patil, R., Senator, T., Swartout,

W.R.: Enabling technology for knowledge sharing. AI Magazine 12(3), 36–36 (1991).
16. Beimel, D., Peleg, M.: Using OWL and SWRL to represent and reason with

situation-based access control policies. Data & Knowledge Engineering 70(6), 596–
615 (2011). Elsevier

17. Rahmouni, H.B., Solomonides, T., Casassa Mont, M., Shiu, S.: Modelling and
enforcing privacy for medical data disclosure across Europe. Medical Informatics in
a United and Healthy Europe, 695–699 (2009). IOS Press

18. Kayes, A.S.M., Rahayu, W., Dillon, T., Chang, E.: Accessing data from multiple
sources through context-aware access control. 2018 17th IEEE International Con-
ference On Trust, Security And Privacy In Computing And Communications/12th
IEEE International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE), 551–559 (2018). IEEE

19. Jabardi, M., Hadi, A.S.: Twitter fake account detection and classification using on-
tological engineering and semantic web rule language. Karbala International Journal
of Modern Science 6(4), 8 (2020).

20. Dorri, A., Kanhere, S.S., Jurdak, R., Gauravaram, P.: Multi-agent systems: A
survey. IEEE Access 6, 28573–28593 (2018)

21. Aué, Joop, Maurício Aniche, Maikel Lobbezoo, and Arie van Deursen. An ex-
ploratory study on faults in web API integration in a large-scale payment company.
In: Proceedings of the 40th International Conference on Software Engineering: Soft-
ware Engineering in Practice, pp. 13–22, 2018.



SCODA - Framework for Software Capability Representation and Inspection 13

22. SEBoK Editorial Board. 2024. The Guide to the Systems Engineering Body
of Knowledge (SEBoK), v. 2.10, N. Hutchison (Editor in Chief). Hoboken, NJ:
The Trustees of the Stevens Institute of Technology. Accessed 15 July 2024.
www.sebokwiki.org. BKCASE is managed and maintained by the Stevens Insti-
tute of Technology Systems Engineering Research Center, the International Council
on Systems Engineering, and the Institute of Electrical and Electronics Engineers
Systems Council.


